Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Bis[bis(3,5-dimethylpyrazol-1-yl)-methane]bis(isothiocyanato)cadmium(II) and catena-poly[[di- μ -dicyanamidato-bis\{[bis(3,5-dimethyl-pyrazol-1yl)methane]cadmium(II)\}]-di- μ-dicyanamidato]

Qiao-Yun Li, ${ }^{\text {a }}$ Hong-Xi Li, ${ }^{\text {a }}$ Xiao-Yan Tang, ${ }^{\text {a }}$ Zhang Yong ${ }^{\text {a }}$ and Jian-Ping Lang ${ }^{\text {a,b* }}$

${ }^{\text {a K Key Laboratory of Organic Synthesis of Jiangsu Province, School of Chemistry and }}$ Chemical Engineering, Suzhou University, Suzhou 215123, Jiangsu, People's Republic of China, and ${ }^{\text {b }}$ State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032,
People's Republic of China
Correspondence e-mail: jplang@suda.edu.cn

Received 4 September 2006
Accepted 25 September 2006
Online 31 October 2006
The Cd atom in bis[bis(3,5-dimethylpyrazol-1-yl)methane]bis(isothiocyanato)cadmium(II), $\left[\mathrm{Cd}(\mathrm{NCS})_{2}\left(\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{4}\right)_{2}\right]$, is octahedrally coordinated by four N atoms from two bis(3,5dimethylpyrazolyl)methane (dmpzm) ligands and two isothiocyanate ligands. The molecule has a crystallographic center of symmetry located at the Cd atom. There are two intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions, each of which is formed between the methylene group of a dmpzm ligand and the N atom of an isothiocyanate ligand. On the other hand, in catena-poly $[[\mathrm{di}-\mu$-dicyanamidato-bis $\{[\mathrm{bis}(3,5-$ dimethylpyrazol1 -yl)methane]cadmium(II) $\}]$-di- μ-dicyanamidato $], \quad\left[\mathrm{Cd}_{2}\left(\mathrm{C}_{2}-\right.\right.$ $\left.\left.\mathrm{N}_{3}\right)_{4}\left(\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{4}\right)_{2}\right]_{n}$, each Cd atom is octahedrally coordinated by two N atoms from one dmpzm ligand and four N atoms from four bridging dicyanamide (dca) anions. Two Cd atoms are bridged by a pair of dca anions, forming a dimeric $\left[\mathrm{Cd}_{2}(\mu-\right.$ $\mathrm{dca})_{2}(\mathrm{dmpzm})_{2}$] unit. Another two pairs of dca anions further link this unit with neighboring units to form a brick-wall layer parallel to (100). A $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interaction between the methylene group of one dmpzm ligand in one layer and a coordinating N atom of a dca ligand in an adjacent layer completes a three-dimensional network.

Comment

Cadmium(II) is known to react with N -donor ligands to form various cadmium(II) complexes which exhibit interesting structural diversity (Sessler et al., 1988; Constable et al., 1991; Plater et al., 2000; Bartoszak-Adamska et al., 2002; Pedrido et al., 2003; Granifo et al., 2004; Liu et al., 2004; Su et al., 2004). Most cadmium complexes of N -donor ligands are those
derived from planar aromatic N, N^{\prime}-bidentate ligands such as 4,4'-bipyridine (4,4'-bipy) and 1,10-phenanthroline (phen) (Long et al., 1993; Neels \& Stoeckli-Evans, 1999; Ye et al., 2000; Yang et al., 2003). However, the chemistry of cadmium complexes of the flexible N, N^{\prime}-bidentate bis(pyrazolyl)alkane ligands has been less well explored (McMorran et al., 2002; Pettinari \& Pettinari, 2005; Cheng et al., 2006).

(I)

(II)

We have recently been involved in studies on the synthesis and luminescent properties of metal complexes of bis(3,5-di-methylpyrazol-1-yl)methane (dmpzm) (Xu et al., 2005; Cheng et al., 2006; Li et al., 2006). In the case of cadmium, we isolated the first cadmium-dmpzm complex, $\left[\mathrm{Cd}_{2} \mathrm{Cl}_{4}(\mathrm{dmpzm})_{2}\right]$, from the reaction of CdCl_{2} with dmpzm, and reported the crystal structure (Cheng et al., 2006). In light of the fact that isothiocyanate and dicyanamide (dca) are versatile linkers for the construction of coordination polymers (Luo, Hong, Cao et al., 2002; Luo, Hong, Weng et al. 2002; Batten \& Murray, 2003; Dong et al., 2003; Luo et al., 2004), we studied the analogous reactions of CdCl_{2} with dmpzm in the presence of $\mathrm{NH}_{4} \mathrm{SCN}$ or sodium dicyanamide ($\mathrm{Na}-\mathrm{dca}$) in order to produce $\mathrm{Cd}-\mathrm{dmpzm}$ coordination polymers linked by isothiocyanate or dicyanamide anions. We isolated one mononuclear complex, [Cd$\left.(\mathrm{NCS})_{2}(\mathrm{dmpzm})_{2}\right]$, (I), and one two-dimensional polymeric

Figure 1
The molecular structure of (I), showing 30% probability displacement ellipsoids. Dashed lines indicate $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions. Atoms $\mathrm{N} 1^{1}, \mathrm{~N} 4^{\mathrm{i}}$ and $\mathrm{N} 5{ }^{\mathrm{i}}$ and unlabeled atoms are related to atoms $\mathrm{N} 1, \mathrm{~N} 4$ and N5 and other labeled atoms by the symmetry operation $(-x,-y, 1-z)$.

Figure 2

The repeating dimeric unit of (II), showing 30% probability displacement ellipsoids [symmetry codes: (i) $x,-y+\frac{3}{2}, z-\frac{1}{2}$; (ii) $x,-y+\frac{1}{2}, z-\frac{1}{2}$].

Figure 3
The brick-wall layer of (II), parallel to (100). The dashed lines indicate $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions.
complex, $\left[\mathrm{Cd}_{2}(\mu \text {-dca })_{4}(\mathrm{dmpzm})_{2}\right]_{n}$, (II). We report here the crystal structures of (I) and (II).

The asymmetric unit of (I) contains half of the $\left[\mathrm{Cd}(\mathrm{NCS})_{2}(\mathrm{dmpzm})_{2}\right]$ molecule. As shown in Fig. 1, atom Cd1 lies on an inversion center and is coordinated by four N atoms [$\mathrm{N} 1, \mathrm{~N} 1^{\mathrm{i}}, \mathrm{N} 4$ and $\mathrm{N} 4^{\mathrm{i}}$; symmetry code: (i) $-x,-y,-z+1$; Table 1] from two dmpzm ligands, located in the equatorial plane, and two N atoms (N 5 and $\mathrm{N} 5^{\mathrm{i}}$) from the two isothiocyanate ligands in the apical sites, thereby forming a slightly distorted CoN_{6} octahedral coordination geometry. The $\mathrm{Cd}-$ N (isothiocyanate) bond distance $[2.305(2) \AA]$ is close to that observed in $\left[\mathrm{Cd}(\mathrm{NCS})_{2} L_{4}\right][2.312(4) \AA ; L$ is $4,4,5,5$-tetra-methyl-2-(4-pyridyl)imidazoline-1-oxyl; Fettouhi et al., 2002]
and intermediate between that in $\left[\mathrm{Cd}(\mathrm{NCS})_{2} L\right][2.217$ (4) \AA; L is $3,3^{\prime}$-iminobis(N, N-dimethylpropylamine); Sain et al., 2003] and that in $\left[\mathrm{Cd}(\mathrm{NCS})_{2} L_{2}\right][2.378$ (2) $\AA ; L$ is isopropyl-2-methylpropane-1,2-diamine; Pariya et al., 1996]. Each dmpzm ligand adopts an extended and twisted exo-anti conformation, and coordinates to one Cd center in an N, N^{\prime}-bidentate fashion, forming a six-membered $\mathrm{C}(\mathrm{N}-\mathrm{N})_{2} \mathrm{Cd}$ chelate ring. The average $\mathrm{Cd}-\mathrm{N}(\mathrm{dmpzm})$ bond distance $[2.399$ (3) \AA] is comparable to that of the corresponding bonds in $\left[\mathrm{Cd}(\mathrm{NCS})_{2} L_{2}\right][2.389(4)(L$ is 2,2'-bipyridine; Rodesiler et al., 1984) and 2.382 (2) \AA (L is isopropyl-2-methylpropane-1,2diamine; Pariya et al., 1996)]. Atom $\mathrm{H} 6 B$ from the CH_{2} group of the dmpzm ligand interacts with atom $\mathrm{N} 5^{\mathrm{i}}$ of the isothiocyanate ligand to afford an intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ contact (Table 2). There are no other evident interactions in the crystal structure of (I).

The asymmetric unit of (II) contains the dimeric $\left[\mathrm{Cd}_{2}{ }^{-}\right.$ $(\mu \text {-dca })_{4}(\mathrm{dmpzm})_{2}$] unit (Fig. 2). The dimeric unit contains two $[\mathrm{Cd}(\mathrm{dmpzm})]^{2+}$ fragments connected by a pair of dca bridges. The $\mathrm{Cd} 1 \cdots \mathrm{Cd} 2$ separation within the dimer unit is 7.595 (5) A. Another two pairs of dca anions further link this unit with the neighboring units via $\mathrm{Cd}-\mu$-dca -Cd bridges to form a brick-wall-type layer parallel to (100) (Fig. 3). The $\mathrm{Cd} 1 \cdots \mathrm{Cd} 1^{\mathrm{i}}$ contact [symmetry code: (i) $x,-y+\frac{3}{2}, z-\frac{1}{2}$] between adjacent dimeric units is 8.900 (5) A. Atoms Cd1 and Cd 2 have a slightly distorted CoN_{6} octahedral coordination geometry (Table 3 z). The average $\mathrm{Cd}-\mathrm{N}(\mathrm{dmpzm})$ bond distance $[2.359(4) \AA$] is comparable to that in (I). The mean $\mathrm{Cd}-\mathrm{N}(\mathrm{dca})$ bond length $[2.316(4) \AA$] is close to those observed in $\left[\mathrm{Cd}(\mathrm{dca})_{2}\left(2,2^{\prime} \text {-bipy }\right)\right]_{n}[2.313$ (3) \AA; Luo, Hong, Cao et al., 2002] and $\left[\operatorname{Cd}(\mathrm{dca})_{2}(\text { phen })\right]_{n}[2.324$ (4) \AA; Luo, Hong, Cao et al., 2002], but slightly longer than that in cis$\left[\mathrm{Cd}(\mathrm{dca})_{2}(\text { phen })_{2}\right][2.251$ (2) Å; Lan et al., 2005]. The N-$\mathrm{Cd}-\mathrm{N}$ bite angle of $81.82(13)^{\circ}$ for Cd 1 or $83.56(13)^{\circ}$ for Cd 2
is larger than that found in complex (I). The central $\mathrm{C}-$ $\mathrm{N}-\mathrm{C}$ angles of the dca ligands $\left[120.9\right.$ (6)-121.0 (5) ${ }^{\circ}$] are normal relative to those in $\left[\mathrm{Cd}(\mathrm{dca})_{2}\left(2,2^{\prime} \text {-bipy }\right)\right]_{n}$ and $\left[\mathrm{Cd}(\mathrm{dca})_{2}(\text { phen })\right]_{n}$.

In (II), three unique $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions (Table 4) exist between the N atoms of some dca anions and the methyl or methylene groups of immediately adjacent dmpzm ligands (Fig. 2). A further $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions $[\mathrm{C} 17-\mathrm{H} 17 A \cdots$ N14 ${ }^{\text {iii }}$; symmetry code: (iii) $\left.-x+1, y-\frac{1}{2},-z+\frac{1}{2}\right]$ between the methylene group of one dmpzm ligand in one layer and a coordinating N atom of a dca ligand in an adjacent layer completes a three-dimensional network.

Experimental

To a solution of $\mathrm{CdCl}_{2} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}(22.8 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\mathrm{NH}_{4} \mathrm{SCN}$ ($11.4 \mathrm{mg}, 0.2 \mathrm{mmol}$) in methanol $(5 \mathrm{ml})$ was added a solution of dmpzm ($0.0408 \mathrm{~g}, 0.2 \mathrm{mmol}$) in methanol (5 ml). The mixture was stirred at room temperature for 3 h and then filtered. Slow evaporation of the solvent from the filtrate gave rise to colorless crystals of (I) (yield 90%). Analysis found: C 45.38 , H 5.01 , N 21.83%; calculated for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{CdN}_{10} \mathrm{~S}_{2}$: C $45.24, \mathrm{H} 5.06, \mathrm{~N} 21.98 \%$. For the preparation of (II), a solution of dmpzm ($0.0204 \mathrm{~g}, 0.1 \mathrm{mmol}$) in methanol (5 ml) was added to a solution of $\mathrm{CdCl}_{2} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}(22.8 \mathrm{mg}$, 0.1 mmol) and sodium dicyanamide ($17.8 \mathrm{mg}, 0.2 \mathrm{mmol}$) in methanol $(5 \mathrm{ml})$. The mixture was stirred at ambient temperature for 4 h and then filtered. Slow evaporation of the solvent from the filtrate afforded colorless crystals of (II) (yield 82%). Analysis found: C 40.29, H 3.52, N 31.35%; calculated for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{Cd}_{2} \mathrm{~N}_{20}$: C 40.15, H 3.59, N 31.21%.

Compound (I)

Crystal data

$\left[\mathrm{Cd}(\mathrm{NCS})_{2}\left(\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{4}\right)_{2}\right]$	$Z=2$
$M_{r}=637.15$	$D_{x}=1.460 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $P 2_{1} / c$	Mo K α radiation
$a=10.117$ (2) A	$\mu=0.93 \mathrm{~mm}^{-1}$
$b=15.951$ (3) \AA	$T=193$ (2) K
$c=9.858$ (2) A	Block, colorless
$\beta=114.33$ (3) ${ }^{\circ}$	$0.40 \times 0.30 \times 0.11 \mathrm{~mm}$
$V=1449.6$ (6) \AA^{3}	
Data collection	
Rigaku Mercury diffractometer ω scans	14037 measured reflections 2645 independent reflections
Absorption correction: multi-scan (Jacobson, 1998)	$\begin{aligned} & 2513 \text { reflections with } I>2 \sigma(I) \\ & R_{\text {int }}=0.027 \end{aligned}$
$T_{\text {min }}=0.708, T_{\text {max }}=0.905$	$\theta_{\text {max }}=25.4^{\circ}$
Refinement	
Refinement on F^{2}	$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0196 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$	+1.3298P]
$w R\left(F^{2}\right)=0.065$	where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$S=1.20$	$(\Delta / \sigma)_{\text {max }}=0.001$ 。
2645 reflections	$\Delta \rho_{\text {max }}=0.40 \mathrm{e}^{\circ}{ }^{-3}$
173 parameters	$\Delta \rho_{\min }=-0.26 \mathrm{e}^{-3}$
H -atom parameters constrained	

Table 2
Hydrogen-bond geometry ($\AA \AA^{\circ}$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 6-\mathrm{H} 6 B \cdots \mathrm{~N} 5^{\mathrm{i}}$	0.99	2.43	$3.288(3)$	145

Symmetry code: (i) $-x,-y,-z+1$.

Compound (II)

Crystal data

$\left[\mathrm{Cd}_{2}\left(\mathrm{C}_{2} \mathrm{~N}_{3}\right)_{4}\left(\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{4}\right)_{2}\right]$	$Z=4$
$M_{r}=897.56$	$D_{x}=1.577 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $P 2_{1} / c$	Mo $K \alpha$ radiation
$a=17.756(4) \AA$	$\mu=1.18 \mathrm{~mm}^{-1}$
$b=12.883(3) \AA$	$T=193(2) \mathrm{K}$
$c=17.637(4) \AA$	Block, colorless
$\beta=110.44(3)^{\circ}$	$0.30 \times 0.28 \times 0.10 \mathrm{~mm}$
$V=3780.5(17) \AA^{3}$	

Data collection

Rigaku Mercury diffractometer ω scans
Absorption correction: multi-scan (Jacobson, 1998)
$T_{\text {min }}=0.719, T_{\text {max }}=0.891$
41781 measured reflections 8663 independent reflections 7222 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.048$ $\theta_{\text {max }}=27.5^{\circ}$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0314 P)^{2}\right. \\
&+8.9035 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=1.24 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.98 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
$w R\left(F^{2}\right)=0.114$
$S=1.12$
8663 reflections
465 parameters

H -atom parameters constrained

Table 3
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$) for (II).

Cd1-N12	2.297 (5)	Cd2-N17	2.297 (5)
Cd1-N11 ${ }^{\text {i }}$	2.308 (4)	$\mathrm{Cd} 2-\mathrm{N} 14$	2.310 (5)
Cd1-N15	2.314 (4)	Cd2-N19	2.326 (4)
Cd1-N10	2.343 (4)	$\mathrm{Cd} 2-\mathrm{N} 20^{\text {ii }}$	2.327 (4)
Cd1-N4	2.344 (4)	$\mathrm{Cd} 2-\mathrm{N} 8$	2.329 (4)
Cd1-N1	2.381 (4)	Cd2-N5	2.382 (4)
N12-Cd1-N15	88.39 (18)	N17-Cd2-N19	90.58 (17)
N12-Cd1-N10	85.37 (18)	N14-Cd2-N19	87.48 (17)
N15-Cd1-N10	90.79 (16)	$\mathrm{N} 17-\mathrm{Cd} 2-\mathrm{N} 8$	97.59 (16)
N12-Cd1-N4	176.41 (16)	$\mathrm{N} 14-\mathrm{Cd} 2-\mathrm{N} 8$	175.36 (16)
N15-Cd1-N4	94.95 (15)	N19-Cd2-N8	91.72 (14)
N10-Cd1-N4	93.26 (15)	N17-Cd2-N5	177.66 (16)
N12-Cd1-N1	94.82 (16)	N14-Cd2-N5	91.83 (16)
N15-Cd1-N1	176.60 (15)	N19-Cd2-N5	87.35 (15)
N10-Cd1-N1	88.36 (15)	N8-Cd2-N5	83.56 (13)
N4-Cd1-N1	81.82 (13)	C26-N13-C25	120.9 (6)
N17-Cd2-N14	86.99 (18)	C27-N16-C28	121.0 (5)

Symmetry codes: (i) $x,-y+\frac{3}{2}, z-\frac{1}{2}$; (ii) $x,-y+\frac{1}{2}, z-\frac{1}{2}$.

Table 4
Hydrogen-bond geometry ($\AA,{ }^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C1-H1A $\cdots \mathrm{N} 12$	0.98	2.56	$3.460(8)$	153
$\mathrm{C} 6-\mathrm{H} 6 B \cdots \mathrm{~N} 10$	0.99	2.49	$3.329(7)$	143
C17-H17A $14 \mathrm{~N}^{\text {iii }}$	0.99	2.53	$3.302(7)$	134
C17-H17B $\cdots \mathrm{N} 20^{\text {ii }}$	0.99	2.50	$3.341(7)$	143
Symmetry codes: (ii) $x,-y+\frac{1}{2}, z-\frac{1}{2}$; (iii) $-x+1, y-\frac{1}{2},-z+\frac{1}{2}$.				

The methy H atoms were constrained to an ideal geometry, with $\mathrm{C}-\mathrm{H}=0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$, but were allowed to rotate freely about the parent $\mathrm{C}-\mathrm{C}$ bonds. All other H atoms were positioned geometrically and treated as riding, with $\mathrm{C}-\mathrm{H}=0.95-0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}($ methyl C $)$.

For both compounds, data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the National Natural Science Foundation of China (grant Nos. 20271036 and 20525101), the NSF of Jiangsu Province (grant No. BK2004205), the State Key Laboratory of Organometallic Chemistry of SIOC (grant No. 06-26) and the Qin-Lan Project of Jiangsu Province in China.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OB3022). Services for accessing these data are described at the back of the journal.

References

Bartoszak-Adamska, E., Bregier-Jarzebowska, R. \& Lomozik, L. (2002). Polyhedron, 21, 739-744.
Batten, S. R. \& Murray, K. S. (2003). Coord. Chem. Rev. 246, 103-130.
Cheng, M.-L., Li, H.-X., Zang, Y. \& Lang, J.-P. (2006). Acta Cryst. C62, m74m77.
Constable, E. C., Ward, M. D. \& Tocher, D. A. (1991). J. Chem. Soc. Dalton Trans. pp. 1675-1683.
Dong, W., Wang, Q. L., Liu, Z. Q., Liao, D. Z., Jiang, Z. H., Yan, S. P. \& Cheng, P. (2003). Polyhedron, 22, 3315-3319.

Fettouhi, M., Ali, B. E., El-Ghanam, A. M., Golhen, S., Ouahab, L., Daro, N. \& Sutter, J.-P. (2002). Inorg. Chem. 41, 3705-3712.
Granifo, J., Garland, M. T. \& Baggio, R. (2004). Inorg. Chem. Commun. 7, 7781.

Jacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Lan, G.-Z., Wu, A.-Q., Guo, G.-C. \& Zheng, F.-K. (2005). Acta Cryst. E61, m1018-m1020.
Li, Q. Y., Zhang, W. H., Li, H. X., Ren, Z. G., Zhang, Y. \& Lang, J. P. (2006). Chin. J. Chem. 24, 811-816.
Liu, S. G., Zuo, J. L., Li, Y. Z. \& You, X. Z. (2004). J. Mol. Struct. 705, 153157.

Long, G. V., Boyd, S. E., Harding, M. M., Buys, I. E. \& Hambley, T. W. (1993). J. Chem. Soc. Dalton Trans. pp. 3175-3180.

Luo, J. H., Hong, M. C., Cao, R., Liang, Y. C., Zhao, Y. J., Wang, R. H. \& Weng, J. B. (2002). Polyhedron, 21, 893-898.

Luo, J. H., Hong, M. C., Weng, J. B., Zhao, Y. J. \& Cao, R. (2002). Inorg. Chim. Acta, 339, 59-65.
Luo, J. H., Zhou, X. G., Gao, S., Weng, L. H., Shao, Z. H., Zhang, C. M., Li, Y. R., Zhang, J. \& Cai, R. F. (2004). Inorg. Chem. Commun. 7, 669-672.

McMorran, D. A., Pfadenhauer, S. \& Steel, P. J. (2002). Aust. J. Chem. 55, 519522.

Neels, A. \& Stoeckli-Evans, H. (1999). Inorg. Chem. 38, 6164-6170.
Pariya, C., Chaudhuri, N. R., Seth, S. \& Das, A. (1996). Acta Cryst. C52, 358360.

Pedrido, R., Bermejo, M. R., Garcia-Deibe, A. M., Gonzalez-Noya, A. M., Maneiro, M. \& Vazquez, M. (2003). Eur. J. Inorg. Chem. pp. 3193-3200.
Pettinari, C. \& Pettinari, R. (2005). Coord. Chem. Rev. 249, 663-691.
Plater, M. J., Foreman, M. R. St J., Gelbrich, T., Coles, S. J. \& Hursthouse, M. B. (2000). J. Chem. Soc. Dalton Trans. pp. 3065-3073.

Rigaku/MSC (2001). CrystalClear. Version 1.30. Rigaku/MSC Inc., The Woodlands, Texas, USA.
Rigaku/MSC (2004). CrystalStructure. Version 3.6.0. Rigaku/MSC Inc., The Woodlands, Texas, USA.
Rodesiler, P. F., Turner, R. W., Charles, N. G., Griffith, E. A. H. \& Amma, E. L. (1984). Inorg. Chem. 23, 999-1004.

Sain, S., Maji, T. K., Mostafa, G., Lu, T. H. \& Chaudhuri, N. R. (2003). J. Coord. Chem. 56, 1157-1168.
Sessler, J. L., Murai, T., Lynch, V. \& Cyr, M. (1988). J. Am. Chem. Soc. 110, 5586-5588.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Su, C. Y., Goforth, A. M., Smith, M. D. \& zur Loye, H. C. (2004). Chem. Commun. pp. 2158-2159.
Xu, Y., Li, H.-X., Zhang, W.-H., Zhang, Y. \& Lang, J.-P. (2005). Acta Cryst. C61, m4-m6.
Yang, J., Ma, J. F., Zheng, G. L., Li, L., Li, F. F., Zhang, Y. M. \& Liu, J. F. (2003). J. Solid State Chem. 174, 116-124.

Ye, B. H., Chen, X. M., Xue, F., Ji, L. N. \& Mak, T. C. W. (2000). Inorg. Chim. Acta, 299, 1-8.

